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Wireless Sensor Networks for Detection and
Localization of Subsea Oil Leakages
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Abstract—This work studies the impact of Wireless Sensor
Networks (WSNs) for oil spill detection and localization in
Subsea Production Systems. The case study is the Goliat
FPSO, with a realistic assumption about the presence of
a WSN built upon the existing passive acoustic sensors
installed on each subsea template to monitor the manifold.
The sensors take local binary decisions regarding the pres-
ence/absenceof a spill by performing an energy test. A Fusion
Center (FC) collects such local decisions and provides a
more reliable global binary decision. The Counting Rule (CR)
and a modified Chair-Varshney Rule (MCVR) are compared.
An objective function based on the Receiver Operating Char-
acteristic (ROC) is used for threshold design. The FC, in case
of a spill detection, provides an estimated position of the leak source. Four localization algorithms are explored: Maximum
A-Posteriori (MAP) estimation, Minimum Mean Square Error (MMSE) estimation, and two heuristic centroid-based algo-
rithms. Detection and localization performances are assessed in comparison to the (position) Clairvoyant Chair-Varshney
Rule (CVR) and to the Cramér-Rao Lower Bound (CRLB), respectively. The considered framework requires the prior
knowledge of the involved subsea production system in terms of components that in case of failure would cause a
leakage and their corresponding failure rates.

Index Terms— Data fusion, leak detection, leak localization, oil spill, subsea production system, wireless sensor
network.

I. INTRODUCTION

THE Oil&Gas industry over the last few decades has
developed new technologies for the exploitation of off-

shore resources previously technologically inaccessible or
economically unfeasible. A relevant example is the use of
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Subsea Production Systems (SPS) connected to a close fixed
platform, a floating system such as Floating Production
Storage and Offloading (FPSO) Unit, Single Point Anchor
Reservoir (SPAR) platform, Tension-Leg Platform (TLP),
a Semi-submersible platform, or directly to the shore (less
common option) [1].

SPSs are solutions that move part of the equipment on the
seabed, in particular they transfer the Christmas trees (which
are named subsea trees in this specific configuration in oppo-
sition to the surface trees present on traditional production
platforms). A SPS allows a single platform to be equipped
with several subsea trees. Usually the outlet streams of a
group of neighboring subsea trees are connected to a manifold
using pipes called jumpers. Manifolds are used to mix flows
in a single stream before being transferred topside through
production risers (some preliminary treatment like separation
can be occasionally performed subsea). Sometimes multiple
components of the SPS are gathered together in a single
structure called template. The topside operators can control the
SPS using umbilicals, which are bundles of flexible tubes and
electrical conductors necessary for the transfer of the control
fluid (necessary for the hydraulic control system), the trans-
fer of chemicals (e.g. corrosion inhibitors, wax inhibitors,
etc.), the powering of the subsea electrical components, and
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the collection of the information coming from the sensors.
A description of a SPS has been given by Bai Y. and Bai Q. [2].

This solution allows for oil extraction in deep waters, which
is normally out of range for fixed platforms, and provides
more effective field exploitation due to its versatility [3]. On
the other hand, having a SPS means to have a greater number
of components located on the seabed that can be subject to
failure. In case a spill occurs, in fact, there is an increased
difficulty to detect it as this will be happening in deep
waters, which results in delayed production shutdowns with
a consequent risk for workers’ safety and the environment.
Furthermore, having a spill originated on the seabed makes
its localization more complex as a visual inspection is clearly
not possible forcing costly inspections performed by Remotely
Operated Vehicles (ROVs) [4]. Reducing the inspection time
by having an estimated leak position can be vital to reduce
the economic loss. For this reason, the presence of a Leak
Detection System (LDS) capable to quickly detect and localize
oil leakages is of paramount importance.

It is important to mention that the effectiveness of a LDS lies
also in the quality of its integration into a risk management
framework so that the increased level of knowledge on the
SPS can be fully exploited. A proper integration can be
obtained when the Dynamic Risk Management Framework
(DRMF) is employed. The DRMF is a process open to external
experience and early warnings allowing the integration of
unknown information. Increased awareness of risks related to
unknown events may lead to a learning and understanding
phase (based on monitoring and review of accumulated infor-
mation). Horizon screening, hazard identification, assessment,
and final decision/action are the steps required by the DRMF
to exhaustively evaluate the risks associated with known
potential accident scenarios. Iterative updates are necessary to
employ the DRMF as an adaptive process [5]–[8]. From this
perspective, a LDS represents an early warning subsystem,
part of a decision-support system related to actions such as
plant shutdown and maintenance.

A. Related Work
Current technologies for leak detection rely on both internal

methods based on measurements of process variables (e.g. flow
rate and pressure) and external methods where sensors monitor
the SPS’s surrounding environment. Their characteristics have
been extensively studied and most of these sensors are already
in place in several offshore fields [9], [10] and their use
is subject to strict quality standards [11]. A key feature
of leakages is their associated acoustic signal that can be
sensed via passive acoustic sensors [12], [13]. Unlike other
technologies (e.g. capacitive sensors) that need to be in direct
contact with the leaking fluid, passive acoustic sensors exhibit
a much broader detection range. Also, their installation is easy
and cost-effective as opposed to fiber optic cables. However,
passive acoustic sensors are extremely sensitive to measure-
ment noise with consequent difficulty in detecting smaller
leaks [9]–[11]. The above-mentioned characteristics suggest
the use of LDS based on acoustic sensors working as nodes of
a WSN. Although the use of WSNs for leak detection purposes
has been considered mainly in the monitoring of Oil&Gas

pipelines [14]–[16], some recent works have focused on the
monitoring of a SPS through WSNs showing its benefits,
especially from the point of view of the DRMF [17]–[19].

The field of data fusion in distributed WSN for event
detection has its first big contribution from the initial work
in [20]. Overtime, there has been a growing interest in
distributed WSN where the sensors transmit binary decisions
to a Fusion Center (FC) as this lowers communications and
processing costs [21]. The following is a list of the main
contributions for such kind of detection problem. In [22], [23]
some fusion rules such as the Chair-Varshney Rule (CVR) and
the Counting Rule (CR) have been proposed addressing also
the problem of the detection performed locally by the sensors.
In [24] a sub-optimal and a heuristic fusion rule, respectively
called Maximum Ratio Combining Fusion Statistic and Equal
Gain Combining Fusion Statistic, are proposed. [25] shows,
in the case of weak signal, a comparison between a WSN
with a FC receiving binary decisions that performs a Locally
Most Powerful Test (LMPT) and the same network where
the FC performs the LMPT after receiving the raw local
measurements. In [26], [27] the Rao Test is proposed showing
the asymptotically equivalent performances of this CR with
respect to the Generalized Likelihood Ratio Test (GLRT).
In [28] a set of fusion rules based on the GLRT, the Bayesian
frameworks and hybrid approaches are shown; the work then
proposes some fusion rules based on the Locally-Optimum
Detection (LOD) framework; the paper also gives a basis
for the localization of the target. The detection problem in
WSN has also been approached proposing Multiple-Input
Multiple-Output (MIMO) architectures with sensors sending
local binary decisions to a FC where the focus is on the
performance of the communication channel between sensors
and FC [29]–[31].

The target localization problem in WSN with one FC and
1-bit local decisions has been studied in various works and
several localization algorithms have been proposed. Many
methods having a statistical basis can be found in [28]. Unfor-
tunately, many of these methods have high computational
complexity and have not been adapted or simplified to work
in specific conditions like the one examined in this work.
Statistical-based methods often require precise information on
the statistical model of the signal which in many cases may
not be available. As a consequence, several heuristic strategies
have been developed that have the advantage of often having
low computational complexity and easy implementation and
requiring little knowledge on the statistical model of the signal.
The most popular heuristic models are here reported. In [32]
the centroid method is introduced showing great simplicity;
this method has been subject to many variations to improve
its performances reducing the ease of implementation and
increasing the required knowledge on the statistical model of
the signal turning it into range-based methods as in [33], [34],
where the additional knowledge is used to create weights for
the centroid calculation. Other popular range-free heuristic
localization methods are the Center of the Minimum Enclosing
Rectangle (CMER) [32] including its extension where the
Steiner center is introduced to remove the dependency on the
chosen coordinate system of the CMER [35], and the Center of
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the Minimum Enclosing Circle (CMEC) [36]. Moreover, [32]
shows the validity of the CMEC when sensors operate in
noise-free settings with a unitary probability of detection in
the proximity of the target.

An important aspect regarding WSNs with FC receiving
1-bit local decisions is the quantizer design. In [37] the
local quantization problem is addressed for the problem of
Bayesian estimation of location parameter in the case of a
conditionally unbiased and efficient estimator with condition-
ally independent observations. The study is also extended to
a scenario when the WSN is under a bit rate constraint and
when the observations are conditionally dependent. In [38] the
quantization task is treated for the problem of tracking moving
targets showing a method for updating dynamically the local
thresholds via Multiobjective Optimization Problem resulting
in a trade-off solution between maximum Fisher Information
and minimum sum of sensor transmission probabilities. The
problem has also been treated for the detection task: in [39] the
quantizers have been designed for a WSN performing a Gen-
eralized LOD (from Davies’ framework) test for detection of
a target whose position and emitted power is unknown; in this
scenario the quantizers are designed using a semi-theoretical
asymptotically optimal approach. In [40] it is shown the
optimal quantizer in case of a deterministic signal and a WSN
with imperfect reporting channel and a FC performing a GLRT
concluding that the optimal threshold should be set to zero at
all nodes. In [25] the case resulting quantizer was obtained
through maximization of the Fisher Information. In [41] the
binary asymmetric quantizer is obtained minimizing the max-
imum Cramér-Rao Lower Bound (CRLB) quantizer.

In general, the problem of the quantizer design has been
mainly treated separately for the detection and estimation
problem so that no optimal quantization strategy has been
proposed so far to jointly maximize detection and parameter
estimation performances.

B. Contribution and Paper Organization
This work investigates the use of a WSN made of passive

acoustic sensors as an external LDS proposing two different
methodologies for leak detection and four algorithms for leak
localization and illustrates results on a realistic case-study
based on the Goliat FPSO and represents a continuation and
extension of the previous work on this topic [42], [43]. The
underwater sensors transmit to the FC their decision regarding
the presence or absence of a leakage assuming an On-Off
Keying (OOK) modulation. The FC fuses the local decision
and takes a global decision and, in the case that a leak is
detected, estimates its position.

The detection is treated at sensor level showing the opti-
mal test statistics to be performed locally, and at a global
level, showing two fusion rules: the well-known CR, and a
newly proposed modified version of the CVR (MCVR). The
threshold selection is based on the optimization of an objective
function and exploits the knowledge of the failure rates of the
components of the SPS.

The analyzed localization methods can be divided into
heuristic and Bayesian methods. The heuristic methods consist
of a centroid-based algorithm, and a newly proposed modified

centroid-based algorithm representing an alteration of the first
methods which extends the localization area without altering
the complexity of the algorithm. The two proposed Bayesian
algorithms are a Maximum A-Posteriori (MAP) estimator and
a Minimum Mean Square Error (MMSE) estimator which
are adapted to work in the current framework: they use the
information of the failure rates of the components of the SPS
to build the prior probabilities for these components being the
leak source.

The present work shows some new advances in the field of
process monitoring:

• The entire work is based on the knowledge and integra-
tion of reliability data of the SPS into the design and
configuration of the LDS;

• The proposed algorithms are built keeping low computa-
tional complexity, and ease of implementation;

• The newly proposed MCVR offers, without altering the
computational complexity of the CR, more flexibility and
the possibility of better results;

• The modified centroid-based method for localization,
without altering the computational complexity of the
centroid-based method, removes the limitation imposed
by a centroid of being located inside the smallest convex
volume inscribing all the sensors;

• The proposed Bayesian localization algorithms are
designed for increased performances keeping contained
their complexity and can further exploit the knowledge
of some reliability data of the SPS.

The remainder of the paper is organized as follows. Sec. II
provides a system overview, focusing on the network archi-
tecture, the signal model (including assumptions related to
signals characterizations), and the necessary knowledge on
the SPS. Data processing for leak detection is described in
Sec. III, which includes local detection at sensor location
and global detection at the FC, plus a description of the
methodology for the selection of the thresholds. Sec. IV
shows the necessary steps of four proposed algorithms for
leak localization. Numerical results on the considered case
study are presented in Sec. V in terms of Receiver Operating
Characteristic (ROC) for the detection and Root Mean Square
Error (RMSE) for the localization. Finally, conclusions and
further works are addressed in Sec. VI.

C. Notation
Upper-case bold letters denote matrices and lower-case bold

letters denote column vectors; (·)T , and ‖ · ‖ denote transpose
and Euclidean norm operators, respectively; â and E(a) denote
an estimate and the expectation of the random variable a,
respectively; Pr(·) and p(·) denote probability mass func-
tions (pmfs) and probability density functions (pdfs), while
Pr(·|·) and p(·|·) their corresponding conditional counterparts;
N (μ, σ 2) denotes a Gaussian distribution with mean μ and
variance σ 2; Q(·) is the complementary cumulative distribu-
tion function (ccdf) of the standard normal distribution; B(p)
denotes a Bernoulli distribution with mean p and variance
p(1 − p); the symbol ∼ means “distributed as”; δ(·) is the
Dirac delta function;

(n
k

) = n!
k!(n−k)! denotes the binomial

coefficient; finally O(·) denotes the big O notation.
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Fig. 1. Distributed Wireless Sensor Network.

II. SYSTEM MODEL

A. Distributed Wireless Sensor Network Architecture
The proposed distributed WSN architecture (see Fig. 1) is

made of K passive acoustic sensors and one FC. The sensors
sense sound pressure to detect the presence (H1) or absence
(H0) of an oil spill.1 The kth sensor (where k = 1, 2, . . . , K )
individually performs a test on the received signal yk and takes
a local decision dk = i ∈ {0, 1} if Hi is declared. The vector
of local decisions d = [d1 . . . dK

]T is collected and processed
at the FC for a global decision Ĥ ∈ {H0,H1}. If Ĥ = H1,
the FC executes a localization algorithm to estimate the leak
position. In addition to be spectrally-efficient, as only 1-bit
communication is required on the reporting channel between
the sensor and the FC, such a system is extremely energy
efficient when OOK is employed for communicating the local
decisions.

B. Signal Model
The model of the received sound pressure yk[n] at the

kth sensor during the nth discrete time, depending on the
corresponding hypothesis (absence/presence of a leakage),
is the following:{

H0 : yk[n] = wk[n]
H1 : yk[n] = ξ g(sk, θ)+wk[n] , (1)

where ξ ∼ N (0, σ 2
ξ ) and wk[n] ∼ N (0, σ 2

w) represent the
emitted sound pressure produced by the leakage at a reference
length (�ref) and the Additive White Gaussian Noise (AWGN),
respectively. wk[n] and ξ are assumed both statistically inde-
pendent due to the spatial separation of the sensors. The
signal power σ 2

ξ and the noise power σ 2
w are assumed to

be known, where σ 2
w is assumed equal for all sensors. Also,

g(sk, θ) represents the Amplitude Attenuation Function (AAF)
depending on the distance between the kth sensor and the leak,
whose positions are denoted sk and θ , respectively. Here the
AAF is treated as the contribution of the seawater absorption
and the geometrical spreading and has the following form:

g(sk, θ) =
√(

�ref

‖sk − θ‖
)ksc

10(�ref−‖sk−θ‖)α10−4
, (2)

where �ref and ‖sk − θ‖ are measured in meters, the seawater
absorption coefficient α is measured in [dB/km], and ksc is the
spreading coefficient. It can be noticed that if ‖sk − θ‖ = �ref,
then g(sk, θ) = 1. Any additional phenomenon influencing

1The analysis related to the sampling frequency is not considered in the
present work.

the attenuation can only be modeled if the environmental
conditions and the design of the SPS are precisely known.
The seawater absorption coefficient α can be computed using
several methods, e.g. Thorp equation [44], Schulkin & Marsh
equation [45], Fisher & Simmons equation [46], Ainslie
& McColm equation [47], and Francois & Garrison equa-
tion [48], [49]. The Francois & Garrison equation, reported
in Appendix A is chosen in this work as it is one of the most
performing equations available with one of the highest range
of validity [50]. This equation depends on several variables
such as salinity, reference frequency, temperature, depth, pH,
and speed of sound. The underwater speed of sound, unlike the
other variables, is often not available in form of experimental
data, therefore it needs to be calculated numerically using one
of the several equations available, e.g. Medwin equation [51],
Mackenzie equation [52], Del Grosso equation [53], and Chen
& Millero equation [54], [55]. In this work we choose to use
the Chen & Millero equation with updated coefficients [56]
due to its wide range of applicability [50]. This equation
depends on variables such as salinity, temperature, and pres-
sure (which can be obtained when depth and average seawater
density are known) and is reported in Appendix B.

C. Subsea Production System
The SPS, as any plant, presents pieces of equipment and

mechanical parts having higher failure rates which makes
them more likely to cause a leakage. In this work, such
components will be referred to as hotspots, and the position of
the mth hotspot will be denoted hm (where m = 1, 2, . . . ,M).
We assume that the component failures are statistically inde-
pendent and we denote ϕm the conditional probability (given
the hypothesis H1) that a failure happens at the mth hotspot,
which can be expressed as

ϕm = Pr(θ = hm |H1) = fm

M∑
m=1

fm

, (3)

where fm is the failure rate of the mth hotspot.

III. LEAK DETECTION

A. Local Detection
Given Eq. (1), the uniformly most powerful test [57] to be

performed by the kth sensor at the generic nth instant is the
energy test [28]:

dk[n] =
{

0, y2
k [n] < τk

1, y2
k [n] ≥ τk

, (4)

where τk is a local threshold. The local performances, in terms
of probability of detection and probability of false alarm,
of this test are defined and computed as follows:

PD,k = Pr(y2
k [n] ≥ τk |H1) = 2Q

⎛⎝√ τk

σ 2
ξ g2(sk, θ)+ σ 2

w

⎞⎠ ,
(5)

PF,k = Pr(y2
k [n] ≥ τk |H0) = 2Q

(√
τk

σ 2
w

)
. (6)
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However, since the leakage position is unknown, Eq. (5)
cannot be used directly. One possibility to overcome this issue
is to refer to average performances with respect to the SPS’s
hotspots, i.e.

PD,k =
M∑

m=1

ϕm PD,k,m , (7)

where PD,k,m is obtained replacing θ with hm in Eq. (5), with
the implicit assumption that leakages generated in the different
hotspots produce signals with equal power σ 2

ξ .
We define the reference Signal-to-Noise ratio (SNR) and the

average sensing SNR at the kth sensor respectively as

	ref = σ 2
ξ

σ 2
w

, 	k = 	ref

M∑
m=1

ϕm g2(sk, hm) . (8)

B. Global Detection
The FC assesses the presence of a leakage based on a

test statistic (
) depending on the local decisions dk (in this
subsection we omit the dependence on n to keep notation
short):

Ĥ =
{
H0, 
 < τo

H1, 
 ≥ τo
, (9)

where τo is a global threshold.
Three different fusion rules are considered for computing

the test statistic at the FC: (i) the CR, (ii) the CVR, and (iii) the
MCVR.

More specifically, the corresponding test statistics are com-
puted as follows:


CR =
K∑

k=1

dk, (10)


CVR =
K∑

k=1

[
dk ln

(
PD,k

PF,k

)
+ (1 − dk) ln

(
1 − PD,k

1 − PF,k

)]
,

(11)


MCVR =
K∑

k=1

[
dk ln

(
PD,k

PF,k

)
+ (1 − dk) ln

(
1 − PD,k

1 − PF,k

)]
.

(12)

The CVR, obtained as the result of Log-Likelihood Ratio
Test, is the optimal test statistics at the FC and results in the
CR in the particular case where the sensors have equal local
probabilities of detection and false alarm [20]. Unfortunately,
the CVR cannot be used in its form as it requires knowledge of
the PD,k’s. For this reason the MCVR here proposed replaces
PD,k with PD,k , via Eq. (7), for all k which are available.
The computational complexity of both fusion rules (CR and
MCVR) is O(K ). Global system performances for each fusion
rule are expressed in terms of Global Probability of Detection
and Global Probability of False Alarm at the FC, defined
respectively as QD = Pr(
 ≥ τo|H1) and QF = Pr(
 ≥
τo|H0). It is worth noticing that QD will depend on the leak

position, then the same approach used in Sec. III-A for local
performances is considered here, i.e.

QD =
M∑

m=1

ϕm QD,m . (13)

C. Threshold Selection
Local thresholds τk are hyper-parameters that ideally should

be optimized based on the global performance. Such a task
does not exhibit an easy solution, then sub-optimal approaches
are usually considered. In this work, thresholds selection is
based on the maximization of the Youden’s Index (J ) [58]:

τ ∗ = arg max
τ

J (τ ) = arg max
τ

{
PD(τ )− PF (τ )

}
. (14)

In Eq. (14), the variables τ , PD , and PF are replaced with
τk , PD,k , and PF,k when tuning the sensors, while they are
replaced with τo, QD , and QF when tuning the FC.

When tuning the FC, from a practical point of view,
the number of thresholds is finite and their values can be
obtained as follows (due to dk in Eqs. (10) and (12) being
binary):

• CR case – The CR exhibits a simple behavior; the set of
possible thresholds is {0, 1, . . . , K } as these are the possi-
ble outcomes of 
CR. The number of possible thresholds
is the number of K -combinations with repetitions of 2
elements (since the local decisions are binary):

C2,K =
(
(2 + K )− 1

K

)
= K + 1 ; (15)

• MCVR case – Being each sensor decision weighted
with coefficients depending on the local performance,
the number of possible thresholds is larger (unless all
the coefficients happen to be equal). These thresholds
can be obtained by computing all the possible out-
comes of 
MCVR, given that the coefficients are known.
The number of possible thresholds is the number of
K -permutations with repetitions of 2 elements:

R2,K = 2K . (16)

Note that the number of possible thresholds in the two cases
includes also the threshold corresponding to the case in which
dk = 0 for all k = 1, 2, . . . , K resulting in QD = QF = 1.

IV. LEAK LOCALIZATION

Consequently to the detection of a leak, the FC pro-
vides an estimate of its position. In practical scenarios,
a leakage happens at a certain (unknown) time denoted
n0 and remains in place for n ≥ n0 until maintenance
is operated. Without loss of generality for the analysis of
localization performance,2 we assume n0 = 1 with the
leakage present all the time. In this work, four different
algorithms are considered: (i) centroid-based localization,
(ii) modified-centroid-based localization, (iii) MAP localiza-
tion, and (iv) MMSE localization.

2It is worth repeating that our focus here is to assess the performance of the
localization accuracy, while the assessment of early response of the system to
a leakage usually analyzed within the framework of quickest detection [59]
is beyond the scope of this work.
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A. Centroid-Based Localization
This algorithm is based on the following steps:
1) Calculate the centroid of the sensors detecting a leakage

at time n:

x(c)[n] =

K∑
k=1

dk[n]sk

K∑
k=1

dk[n]
; (17)

2) Calculate the cumulative moving average (CMA) of the
centroid positions based on Eq. (18);

x(c)[n]

=
⎧⎨⎩x(c)[1], n =1

x(c)[n − 1]+ 1

n

(
x(c)[n]−x(c)[n − 1]

)
, n>1

(18)

3) Estimate the leak position via distance minimization
between the positions of the hotspots and the CMA of
the centroid:

mo[n] = arg min
m=1,...,M

∥∥∥x(c)[n] − hm

∥∥∥ , (19)

θ̂ [n] = hmo[n] . (20)

B. Modified Centroid-Based Localization
This algorithm is proposed as the centroid-based algorithm

does not allow the localization of those leakages happening in
hotspots located outside the smallest convex volume inscribing
all K sensors. This can be overcome through the modification
of Eq. (17). The heuristic is to have, for each sensor not
detecting the spill, the antipodal point (s(a)

k [n]) with respect
to a point reflection with the centroid x(c)[n] being the point
of inversion. Hence, for the kth sensor such that dk[n] = 0:

s(a)
k [n] = 2x(c)[n] − sk . (21)

Let us define z as the centroid of all sensors present in the
WSN:

z = 1

K

K∑
k=1

sk . (22)

This operation is necessary to obtain a modified centroid that
accounts for both the active sensors (via actual position) and
inactive sensors (via antipodal position):

x(mc)[n] = 1

K

K∑
k=1

(
dk[n]sk + (1 − dk[n])s(a)

k [n]
)

= 2x(c)[n] − z . (23)

The presence of the antipodal position makes it possible for
the FC to localize leakages outside the sensor’s perimeter.
Although it is possible to perform this algorithm by substi-
tuting Eq. (17) in Step 1 of the centroid-based algorithm with
Eq. (23), the next steps show a way to present the algorithm
that highlights the relationship with the final result of the
centroid-based algorithm:

1) Calculate z using Eq. (22) — Since this term is constant
over time, this step does not need to be repeated;

2) Calculate x(c)[n] as in Eq. (17);
3) Calculate a modified version of Eq. (18) using Eq. (24),

which consists of the CMA of the modified centroid
from Eq. (23);

x(mc)[n]

=
{

2x(c)[1] − z, n =1

2x(c)[n−1]+ 2
n

(
x(c)[n] − x(c)[n−1]

)
− z, n > 1

(24)

4) Estimate the leak position via distance minimization
between the positions of the hotspots and the CMA of
the modified centroid:

mo[n] = arg min
m=1,...,M

∥∥∥x(mc)[n] − hm

∥∥∥ , (25)

θ̂[n] = hmo[n] . (26)

C. Maximum A-Posteriori Localization
The following Bayesian estimator is proposed in order to

exploit the prior knowledge of ϕm . This algorithm makes
the simplification that Pr(θ = hm |d[n],H1) = Pr(θ =
hm |d[n], Ĥ = H1):

1) For each hotspot, calculate of the log-likelihood of the
decision vector at the nth discrete time d[n] given that
the leak is located in the mth hotspot using Eq. (27), as
shown at the bottom of the page;

2) For each hotspot, compute the joint probability of the
decision vectors up to the current discrete time via
the updating formula in Eq. (28), as shown at the
bottom of the page, where we have exploited conditional
independence of sensors decision both in space and time;

3) Estimate the leak position chosen among the M hotspots
through joint probability maximization:

mo[n] = arg max
m=1,...,M

ln Pr(d[1], . . . , d[n], θ = hm,H1) ,

(29)

θ̂ [n] = hmo[n] . (30)

ln Pr(d[n]|θ = hm ,H1) =
K∑

k=1

(
dk[n] ln PD,k,m + (1 − dk[n]) ln (1 − PD,k,m)

)
(27)

ln Pr(d[n], . . . , d[1], θ = hm ,H1) =
{

ln Pr(d[1]|θ = hm ,H1)+ ln ϕm, n = 1

ln Pr(d[n]|θ = hm ,H1)+ ln Pr(d[n − 1], . . . , d[1], θ = hm,H1), n > 1
(28)
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D. Minimum Mean Square Error Localization
Also this Bayesian estimator is proposed to exploit the

knowledge of ϕm , still relying on the simplification that Pr(θ =
hm |d[n],H1) = Pr(θ = hm |d[n], Ĥ = H1). For compactness,
let us introduce the following definition:

αm [n] � Pr (d[n], . . . , d[1], θ = hm,H1, ) . (31)

1) For each hotspot, calculate the likelihood of the decision
vector at the nth discrete time d[n] given that the leak
is located at the mth hotspot where we have exploited
conditional independence of sensors decision in space;

Pr(d[n]|θ = hm,H1)

=
K∏

k=1

(
PD,k,m

dk [n](1 − PD,k,m)
1−dk [n]) ; (32)

2) Compute the geometric mean of all the probabilities
Pr(d[n]|θ = hm,H1) with m = 1, . . . ,M:

cn =
(

M∏
m=1

Pr(d[n]|θ = hm,H1)

)1/M

; (33)

3) For each hotspot, compute the scaled version of the joint
probability αm [n] via the updating formula in Eq. (34);

α̃m [n]
=
{
ϕm, n = 0

c−1
n Pr(d[n]|θ = hm,H1)α̃m [n−1], n > 0

(34)

4) Calculate the expected value of the posterior probability
of the leak position given the decisions vectors up to the
current discrete time (proof is reported in Appendix C):

x(mmse)[n] = E (θ |d[n], . . . , d[1],H1)

=

M∑
m=1

α̃m[n]hm

M∑
m=1

α̃m[n]
; (35)

5) Estimate the leak position via distance minimization
between the positions of the hotspots and the result of
Eq. (35):

mo[n] = arg min
m=1,...,M

∥∥∥x(mmse)[n] − hm

∥∥∥ , (36)

θ̂ [n] = hmo[n] . (37)

A normalization procedure like that reported in Steps 2 and 3
is required to avoid arithmetic underflow for sufficiently large
values of n. A proper normalization coefficient can be found
computing a log-average of the values (by averaging their
natural logarithms and then performing the exponential to
return to the original scale), which is equivalent to their
geometric mean. This has the benefit to properly scale all
likelihoods of the observations of the sensors at each instant
avoiding an unwanted underflow.

TABLE I
COMPUTATIONAL COMPLEXITY OF THE PROPOSED

LEAK LOCALIZATION ALGORITHMS

Fig. 2. Goliat’s subsea template: the grey elements are the structure
and the subsea trees, the blue lines constitutes the manifold, the green
dots are the passive acoustic sensors, and the red dots are the hotspots.

Table I compares the computational complexity of the pro-
posed leak localization algorithms.

V. CASE STUDY — GOLIAT FPSO
The Goliat FPSO is an oil production platform located in

the Norwegian Barents Sea and it is currently the world’s
northernmost offshore platform. Because of its location in
an environmentally sensitive area, the platform is subject to
strict regulations, especially regarding oil spills. The Goliat
FPSO employs a SPS which relies on 8 subsea templates
for a total of 22 wells (12 production wells, 7 water injec-
tors, and 3 gas injectors). Each template is equipped with a
manifold and four well slots as shown in Fig. 2. The LDS
monitoring each template is a combination of internal and
external sensors, although the main usage of the internal
sensors is process monitoring. Regarding the external LDS,
one capacitive sensor is positioned above each subsea tree,
while K = 3 passive acoustic sensors are installed to monitor
the manifold [60], [61]. It is important to mention that the
installed LDS is mainly designed to carry out the detection
task, not the localization task being this one less critical.
M = 20 hotspots have been recognized after a reliability
analysis on the SPS. Such components correspond to 14 valves
(8 branch valves and 6 isolation valves) and 6 connectors
(4 connecting production lines and 2 connecting gas lift lines).
Sensors and hotspots are highlighted in Fig. 2 where it can be
seen that 6 (resp. 14) hotspots being inside (resp. outside)
the sensors’ perimeter. According to the OREDA (Offshore
and Onshore Reliability Data) Handbook, the failure rates of
connectors and isolation valves (in subsea manifolds) have
the same order of magnitude (10−6 h−1) giving no specific

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 06,2021 at 08:52:36 UTC from IEEE Xplore.  Restrictions apply. 



TABELLA et al.: WSNs FOR DETECTION AND LOCALIZATION OF SUBSEA OIL LEAKAGES 10897

TABLE II
PARAMETERS USED TO SIMULATE A LEAK SCENARIO

TABLE III
AVERAGE SENSING SNR AT THE DIFFERENT SENSORS

Fig. 3. Local ROC curves highlighting the operating points selected via
Youden’s Index maximization.

values based on the different diameters or other design speci-
fications [62]. As a consequence, we can assume the hotspots
to have the same value of fm . In the case study, hotspots and
sensors are assumed to be at the same height.

The methodologies for detection and localization described
in the previous sections are applied here assuming that the
sensors are part of a WSN as described in Sec. II.

In order to better analyze the results, two different cases are
simulated: 	ref ∈ {10 dB, 15 dB}.

The values of QD and QF have been computed via numer-
ical simulation with 108 Monte Carlo runs equally divided

TABLE IV
LEAK DETECTION PERFORMANCES AT THE SENSORS

Fig. 4. Global ROC curves.

between H0 and H1. The localization performances have been
produced via numerical simulation with 104 Monte Carlo
runs where the H1 scenario is simulated. The simulation is
carried out with the FC performing both the CR and the
MCVR operating at the thresholds obtained via maximization
of the Youden’s Index. The performances are assessed in
terms of variation of the RMSE with respect to the num-
ber of instants (N) since the leakage started occurring. All
the simulations have been carried out using the software
MATLAB. The parameters used for the case study are found
in Table II.

A. Local Detection Results
Table III shows the average SNR for each sensor in the case

of 	ref = 10 dB and 	ref = 15 dB obtained via Eq. (8).
Table IV shows the tuning result after the maximization of

the local Youden’s Index which highlights how a higher value
of 	k allows a higher resulting threshold τ ∗

k . In this specific
scenario sensor 2 has the highest value of 	k for both 	ref.
The location of the operating points in the ROC space can
be seen in Fig. 3 where it can be noticed that the averaging
procedure in Eq. (7) provides 3 similar ROC curves, leading
to similar operating points.
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Fig. 5. Localization performance with CR and Γref = 10 dB.

This behavior is not surprising as this case study shows
sufficiently similar values of 	k . The impact of efficient sensor
placement, possible through the maximization of 	k for each
sensor, is not investigated in this work.

B. Global Detection Results
Fig. 4 shows the ROC curves of the LDS in the two cases

comparing the CR and the MCVR using the (position) Clair-
voyant CVR as upper bound (enabling the use of Eq. (11)).
The impact of 	ref on the global performance is apparent.
The ROC curves of the two different fusion rules are largely
similar, thus each operation point of the CR might be achieved
also with the MCVR via appropriate threshold selection.
Excluding the useless cases with QD = QF = 0 and
QD = QF = 1, based on Eq. (15) and Eq. (16) the CR (resp.
the MCVR) provides 3 (resp. 7) possible operation points, thus
the large flexibility of the MCVR allows to take into account
for more design needs with respect to the CR. On the other
hand, the Clairvoyant CVR shows a different behavior since its
points do not overlap with those generated by the two fusion
rules. Note that in Fig. 4 the curves of the MCVR and the
CR cross the curve of the Clairvoyant CVR in certain areas
of the plot. This should not surprise as the lines are simple
linking segments between points representing two consecutive
thresholds and must not be interpreted as a continuous locus
of possible operation points.

Table V shows the operation points from the threshold
optimization procedures. Both CR and MCVR show lower
values of maximum Youden’s Index when compared to the
Clairoyant CVR. It is interesting to notice that in the case
of high SNR (e.g. 	ref = 15 dB), the optimal operation points
from the two considered fusion rules are very similar, while for
lower SNR values (e.g. 	ref = 10 dB) the optimization points
are different and the one from the MCVR has no counterpart
with the CR, moreover, the optimization point from the MCVR
in such scenario tends to be closer (in terms of QD and QF )
to the one from the Clairvoyant CVR. This shows how the
MCVR, maintaining the same complexity of the CR, gives
more flexibility to the LDS and may enable better results.

C. Localization Results
Fig. 5, 6, 7, and 8 show the result of the four proposed

localization techniques for both fusion rules (CR and MCVR)

TABLE V
LEAK DETECTION PERFORMANCES AT THE FC

and both reference SNR values (	ref = 10 dB and 	ref =
15 dB). In addition, the Cramér-Rao Lower Bound (CRLB)
is displayed for an estimator that follows a perfect detector
(QD = 1, QF = 0). The derivation of the CRLB can be found
in Appendix D. As a consequence, such CRLB is independent
of the evaluated fusion rule and only depends on the value of
	ref. Clearly, such lower bound is purely theoretical and cannot
be attained as a perfect detection cannot be achieved even in
the case of the (position) Clairvoyant CVR (see Fig. 4). The
different performance related to the case of a leakage located
inside or outside the sensor perimeter is also highlighted. For
the simulations, local and global thresholds in Table IV and
Table V were considered.

Again, the figures show that even from the localization
perspective, at high SNR (i.e. 	ref = 15 dB) the correspond-
ing localization procedures perform similarly independently
of the considered fusion rule (CR or MCVR). Apparently,
the centroid-based method is the least performing, as it fails
in localizing leakages outside the sensor perimeter. The newly
proposed modified-centroid-based method tackles this limi-
tation through the reflection of the positions of the inactive
sensors and the numerical simulations confirm the effective-
ness of such approach, which does not require additional
computational resources. It is worth highlighting that the
centroid-based method is extremely well performing when
leakages are located inside the sensor perimeter, but extremely
bad-performing in the other cases.

Both the considered statistical approaches exhibit better
performance than the previous heuristic ones, with a price in
terms of computational complexity. More specifically, MAP
and MMSE behave similarly, with the latter slightly outper-
forming the former when few samples are available.
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Fig. 6. Localization performance with CR and Γref = 15 dB.

Fig. 7. Localization performance with MCVR and Γref = 10 dB.

Fig. 8. Localization performance with MCVR and Γref = 15 dB.

The CRLB shows little variation when the target is inside
the sensor perimeter compared to when it is located outside.
Not surprisingly the CRLB, despite showing better perfor-
mances in case 	ref = 15 dB for small values of N (the RMSE
is around 1 meter smaller), converges to zero in both case
as N → ∞. This convergence is fast enough to make the
difference in RMSE look imperceptible in the two cases at
sufficiently high values of N .

Finally, it is worth mentioning that the trade-off between
the probabilities of detection and false alarm at the detection
stage is handled in this work through the Youden’s Index
maximization. However, from localization perspective, it is the

detection probability that matters as localization performance
increases with it. This must be considered when comparing
performance related to different reference SNR which might
correspond to different operation points of the ROC. The
design of the overall parameters configuration taking into
account both detection and localization performance is not
considered in this work.

VI. CONCLUSION

This work investigated the use of WSNs for subsea oil spill
detection and localization, using Goliat FPSO as a case study.
Local sensors’ binary decisions are collected at the FC, where
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CR and MCVR are considered for data fusion. ROC per-
formances, obtained through realistic numerical simulations,
showed the potential benefit of the considered approach. Two
heuristic and two Bayesian estimation algorithms have been
considered for localization, with the second pair exhibiting
better performance but higher computational complexity.

The proposed methodologies were developed taking into
account a possible integration of the LDS with the DRMF,
exploiting the results of a risk analysis carried out on the
SPS. The detection and localization results show the benefit
of designing a LDS exploiting the knowledge of the hotspots
of the SPS and their failure rates as these help us computing
prior probabilities to be used in the algorithms. A key element
for a performing LDS is the integration of the results of the
risk analysis into the LDS design in an iterative exchange
of information to increase the system capability of predict-
ing and handling unwanted events. Thresholds selection has
been based on detection performance only, while future work
would include localization performance into hyperparameters
optimization and exploring the impact of system design on
risk management.

APPENDIX A
FRANCOIS & GARRISON EQUATION

The following equation can be found in [48], [49]. This
method requires that the input values are in the exact mea-
surement units reported at the end of the Appendix.

Absorption Coefficient [dB km−1]:

α = A1 P1 f1 f 2

f 2 + f 2
1︸ ︷︷ ︸

H3BO3
Contribution

+ A2 P2 f2 f 2

f 2 + f 2
2︸ ︷︷ ︸

MgSO4
Contribution

+ A3 P3 f 2︸ ︷︷ ︸
H2O

Contribution

H3BO3 Contribution:
A1 = 8.86

c
10(0.78 pH−5)

[
dB

km kHz

]
P1 = 1

f1 = 2.8 (S/35)0.5 10[4−1245/(T+273)][kHz]
MgSO4 Contribution:

A2 = 21.44
S

c
(1 + 0.025 T )

[
dB

km kHz

]
P2 = 1 − 1.37 · 10−4 D + 6.2 · 10−9 D2

f2 = 8.17 · 10[8−1990/(T+273)]

1 + 0.0018 (S − 35)
[kHz]

H2O Contribution:

A3 =
3∑

m=0

am T m
[

dB

km kHz2

]
P3 = 1 − 3.83 · 10−5 D + 4.9 · 10−10 D2

In the above-reported method f is the frequency [kHz],
c is the speed of sound [m s−1], S is the salinity [‰],
T is the temperature [◦C], and D is the depth [m].
The temperature-dependent values of the coefficients am

(m = 0, 1, 2, 3) are reported in Tab. VI.

TABLE VI
COEFFICIENTS OF THE H2O CONTRIBUTION

TABLE VII
UPDATED COEFFICIENTS OF CHEN & MILLERO EQUATION

APPENDIX B
CHEN & MILLERO EQUATION

The following equation can be found in [54]. Table VII
uses the updated coefficient present in [56] after the adoption
of the International Temperature Scale of 1990. This method
requires that the input values are in the exact measurement
units reported at the end of the Appendix.

Speed of Sound:
c = C + AS + BS3/2 + DS2

C =
3∑

m=0

5∑
n=0

Cmn Pm T n

A =
3∑

m=0

4∑
n=0

Amn Pm T n

B =
1∑

m=0

1∑
n=0

Bmn Pm T n

D = D00 + D10 P

where c is the speed of sound [m s−1], S is the salinity
[‰], T is the temperature [◦C], and P is the pressure [kPa].
The values of the coefficients Cmn , Amn , Bmn , and Dmn are
reported in Tab. VII.
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APPENDIX C
PROOF OF MMSE ALGORITHM

Here we show the validity of Eq. (35) exploiting the
conditional independence of sensors decision in time:

x(mmse)[n]
= E (θ |d[n], . . . , d[1],H1)

=
∫

p(θ |d[n], . . . , d[1],H1)θ dθ

=
∫

p(d[n], . . . , d[1]|θ,H1)p(θ |H1)

p(d[n], . . . , d[1]|H1)
θ dθ

=
∫

p(d[n], . . . , d[1]|θ,H1)p(θ |H1)θ dθ∫
p(d[n], . . . , d[1]|θ,H1)p(θ |H1) dθ

=

M∑
m=1

Pr(d[n], . . . , d[1]|θ = hm,H1) Pr(θ = hm |H1)hm

M∑
m=1

Pr(d[n], . . . , d[1]|θ = hm,H1) Pr(θ = hm |H1)

=

(
n∏

i=1
c−1

i

)
M∑

m=1

(
n∏

i=1
Pr(d[i ]|θ = hm,H1)

)
ϕm hm(

n∏
i=1

c−1
i

)
M∑

m=1

(
n∏

i=1
Pr(d[i ]|θ = hm,H1)

)
ϕm

=

M∑
m=1

c−1
n Pr(d[n]|θ = hm,H1)α̃m [n − 1]hm

M∑
m=1

c−1
n Pr(d[n]|θ = hm,H1)α̃m [n − 1]

=

M∑
m=1

α̃m[n]hm

M∑
m=1

α̃m[n]
,

where

p(d[n], . . . , d[1]|θ,H1)

=
M∑

m=1

Pr(d[n], . . . , d[1]|θ = hm,H1)δ(θ − hm) ,

and

p(θ |H1) =
M∑

m=1

Pr(θ = hm |H1)δ(θ − hm) .

APPENDIX D
DERIVATION OF THE CRAMÉR-RAO LOWER BOUND

We derive the CRLB of an estimator θ̂ that follows a perfect
detector (QD = 1, QF = 0). In agreement with the case study,
we consider θ , sk, hm ∈ R

2, ∀ k = 1, . . . , K and ∀ m =
1, . . . ,M , although the procedure is analogous for the case of
vectors belonging to R

3.
The CRLB, for each component of θ̂ = [θ̂1 θ̂2

]T
, is based

on the Fisher Information Matrix (FIM) I(θ):

CRLB
(
θ̂i
) = [I(θ)]−1

ii . (38)

The FIM is obtained exploiting its additive property for
independent observations in space and time, i.e.

I(θ) = N
K∑

k=1

Ik(θ) , (39)

where I k(θ) is the FIM with respect to the local decisions of
the kth sensor at the generic instant n, and N is the number of
instants since the spill occurred (i.e. the number of performed
estimations). The expression of Ik(θ) is obtained as follows:

Ik(θ) = Edk [n]|H1

[(
∂ ln p(dk[n]|H1; θ)

∂θ

)
×
(
∂ ln p(dk[n]|H1; θ)

∂θ

)T
]
,

where

∂ ln p(dk[n]|H1; θ)

∂θ
= ∂

∂θ
ln
(

PD,k
dk[n](1 − PD,k)

1−dk [n])
= dk[n] − PD,k

PD,k(1 − PD,k)

∂PD,k

∂θ
,

and, using the definition of PD,k in Eq. (5),

∂PD,k

∂θ
= pN (0,1)

⎛⎝√ τk

σ 2
ξ g2(u)+ σ 2

w

⎞⎠
× σ 2

ξ

√
τk[

σ 2
ξ g2(u)+ σ 2

w

]3/2 ∂
(
g2(u)
)

∂θ
,

with u = ‖sk − θ‖. Also, the chain rule provides

∂
(
g2(u)
)

∂θ
= ∂
(
g2(u)
)

∂u

∂u

∂θ
= ψ(u)

θ − sk

u

where, using the definition of g(u) in Eq. (2),

ψ(u) = ∂
(
g2(u)
)

∂u
= − lref

ksc
(
ksc 104 + α u ln 10

)
10[4+α(u−lref)10−4] uksc+1

.

Combining the previous expressions, we get

∂ ln p(dk[n]|H1; θ)

∂θ
= dk[n] − PD,k

PD,k(1 − PD,k)

×pN (0,1)

⎛⎝√ τk

σ 2
ξ g2(u)+ σ 2

w

⎞⎠
× ψ(u)σ 2

ξ

√
τk

u
[
σ 2
ξ g2(u)+ σ 2

w

]3/2 (θ − sk) ,

and then

Ik(θ) =
pN (0,1)

2
(√

τk

σ 2
ξ g2(u)+σ 2

w

)
PD,k

2(1 − PD,k)2

ψ2(u)σ 4
ξ τk

u2
[
σ 2
ξ g2(u)+ σ 2

w

]3
×(θ − sk)(θ − sk)

T , (40)

where the expectation has been calculated with the knowledge
that dk[n]|H1 ∼ B(PD,k). Finally, replacing Eq. (40) into
Eq. (39), we get the CRLB via Eq. (38).
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